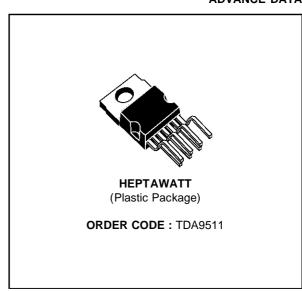


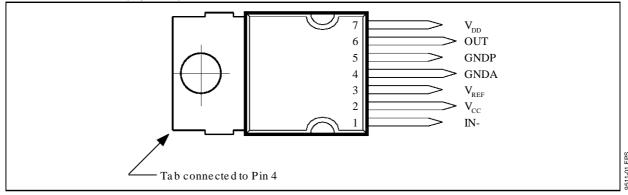
TDA9511

DC COUPLING HIGH VOLTAGE VIDEO AMPLIFIER

ADVANCE DATA


BANDWIDTH: 45MHz TYPICALRISE AND FALL TIME: 8ns TYPICAL

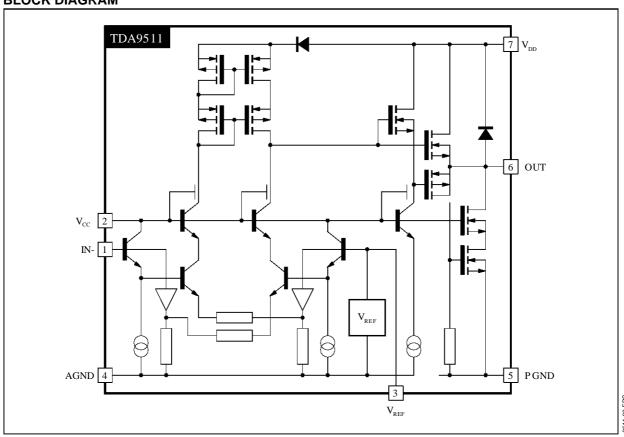
SUPPLY VOLTAGE: 120V
 FLASH-OVER PROTECTION
 POWER DISSIPATION: 3.0W


■ ESD PROTECTED

DESCRIPTION

The TDA9511 includes a video amplifier designed with a high voltage bipolar/CMOS/DMOS technology (BCD). It drives in DC coupling one cathode of a monitor and is protected against flashovers. It is available in heptawatt package.

PIN CONNECTION (top view)



PIN CONFIGUATION

Pin N°	Symbol	Function				
1	IN-	Input of the amplifier. It is a virtual ground with 3.5V bias voltage and 10µA input bias current.				
2	V _{CC}	Low Voltage Power Supply (12V Typ.)				
3	V _{REF}	Internal Voltage Reference (3.1V)				
4	GNDA	Analog Ground				
5	GNDP	Power Ground				
6	OUT	Output driving the cathode. Pin 6 is internally protected against CRT arc discharges by a diode limiting the output voltage to $V_{\rm DD}$.				
7	V _{DD}	High Voltage Power Supply (120V Max.)				

March 1996 1/5

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply High Voltage (Pin 7)	130	V
V _{CC}	Supply Low Voltage (Pin 2)	20	V
I _{OD} I _{OG}	Output Current to VDD (Pin 6) Output Current to Ground (Pin 6) $(T_j = T_{j \text{ Max.}})$	protected 80	mA
lj	Input Current (Pin 1)	50	mA
T _j	Junction Temperature	150	°C
T _{oper}	Operating Ambient Temperature	0, +70	°C
T _{stg}	Storage Temperature	-20, +150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction-Case Thermal Resistance Max.	3	°C/W
R _{th (j-a)}	Junction-Ambient Thermal Resistance Typ.	70	°C/W

ELECTRICAL CHARACTERISTICS (V_{CC} = 12V, V_{DD} = 90V, T_{amb} = 25°C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{DD}	High Supply Voltage (Pin 7)		20		120	V
V _{CC}	Low Supply Voltage (Pin 2)		10	12	15	V
I _{DD}	DC Current of High Voltage Supply (without feedback current)	V _{OUT} = 60V		6	TBD	mA
I _{CC}	Low Voltage Supply Internal DC Current			20		mA
V _{REF}	Internal Reference (Pin 3)			3.1		V
dV_{REF}/d_{VCC}	Drift of Reference Voltage versus V_{CC}			TBD		%
dV _{REF} /dT	Drift of Reference Voltage versus Temperature			TBD		mV/°C
V _{SATH}	High Output Saturation Voltage (Pin 6)	I _O = -60mA		V _{DD} - 15		V
V _{SATL}	Low Output Saturation Voltage (Pin 6)	$I_O = 60 \text{mA}$		17		V
BW	Bandwidth at -3dB	Measured on CRT cathodes. C_{LOAD} = 10pF, $R_{protect}$ = 150 Ω , V_{OUT} = 60V, ΔV_{OUT} = 40 V_{PP} , Feedback gain = 20		45		MHz
t _R , t _F	Rise and Fall Time	Measured between 10% & 90% of output pulse, $C_{LOAD} = 10pF$, $R_{protect} = 150\Omega$, $V_{OUT} = 60V$, $\Delta V_{OUT} = 40V_{PP}$		8		ns
G _O	Open Loop Gain			TBD		dB
	Open Loop Gain Temperature Coefficient			TBD		dB/°C
I _{IB}	Input Bias Current (Pin 1)	V _{OUT} = 60V		TBD		μΑ
	Input Bias Temperature Coefficient			TBD		nA/°C
R _{IN}	Input Resistance			200		kΩ

TYPICAL APPLICATION

The TDA9511 is composed of different parts:

- A differential amplifier, the gain of which is fixed by external feedback resistors;
- An integrated voltage reference designed with a bandgap;
- A protection diode against CRT arc discharges.

PC board lay-out

The best performances of the high voltage video amplifier will be obtained only with a carefully designed PC board. Output to input capacitances are of particular importance.

For a single amplifier, the input-output capacitance, in parallel with the relatively high feedback resistance, creates a pole in the closed-loop transfer function.

A low parasitic capacitance (0.3pF) feedback resistor and HF isolated printed wires are necessary.

Power dissipation

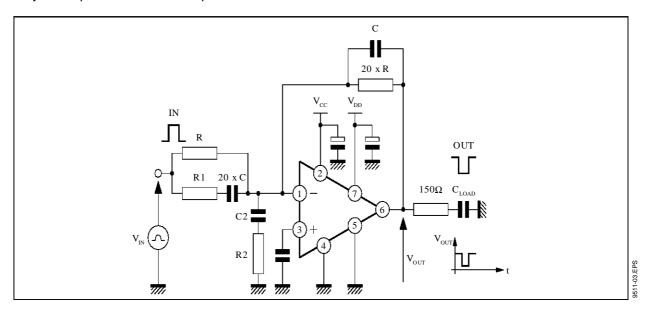
The power dissipation consists of a static part and a dynamic part. The static dissipation varies with

the output voltage and the feedback resistor. The dynamic power dissipation increases with the pixel frequency.

For a signal frequency of 40MHz and $40V_{PP}$ output signal, the typical power dissipation is about 3.0W, for $V_{DD} = 120V$.

In first approximation, the dynamic dissipation is:

$$P_D = V_{DD} * C_{LOAD} * \Delta V_{OUT} * f$$


and the total dissipation is:

$$\mathsf{P} = \mathsf{V}_\mathsf{DD} * \mathsf{C}_\mathsf{LOAD} * \Delta \mathsf{V}_\mathsf{OUT} * \mathsf{f} + \mathsf{V}_\mathsf{DD} * \mathsf{I}_\mathsf{DD}$$

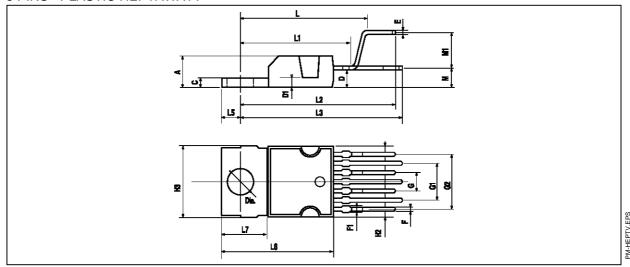
+
$$V_{CC}$$
 * I_{CC} - $(V_{DD}$ - $\overline{V}_{OUT})$ $\frac{\overline{V}_{OUT}}{R_{FEEDBAK}}$

with f = pixel frequency

P = 120V x 10pF x 40V x 40MHz + 120V x 6mA + 12V x 20 mA - 60^2 V/20kΩ = 3.0W

R1 and R2 are in the range of some hundreds ohms.

C2 is in the range of some tens pF.


R is in the range of $1k\Omega$.

The DC feedback gain is from 15 to 30.

C must be lower than 1pF taking into account all the parasitic capacitors

PACKAGE MECHANICAL DATA

5 PINS - PLASTIC HEPTAWATT

Dimensions		Milli meters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
А			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54			0.848	
L3		22.62			0.891	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
М		2.8			0.110	
M1		5.08			0.200	
Dia	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I2C Patent.
Rights to use these components in a I2C system, is granted provided that the system conforms to
the I2C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

